90 research outputs found

    From Nonlinear Optimization to Convex Optimization through Firefly Algorithm and Indirect Approach with Applications to CAD/CAM

    Get PDF
    ABSTRACT. Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail.This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor’s method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently

    Firefly algorithm for polynomial BĂ©zier surface parameterization

    Get PDF
    A classical issue in many applied fields is to obtain an approximating surface to a given set of data points. This problem arises in Computer-Aided Design and Manufacturing (CAD/CAM), virtual reality, medical imaging, computer graphics, computer animation, and many others. Very often, the preferred approximating surface is polynomial, usually described in parametric form. This leads to the problem of determining suitable parametric values for the data points, the so-called surface parameterization. In real-world settings, data points are generally irregularly sampled and subjected to measurement noise, leading to a very difficult nonlinear continuous optimization problem, unsolvable with standard optimization techniques. This paper solves the parameterization problem for polynomial BĂ©zier surfaces by applying the firefly algorithm, a powerful nature-inspired metaheuristic algorithm introduced recently to address difficult optimization problems. The method has been successfully applied to some illustrative examples of open and closed surfaces, including shapes with singularities. Our results show that the method performs very well, being able to yield the best approximating surface with a high degree of accuracy

    Firefly algorithm for explicit B-spline curve fitting to data points

    Get PDF
    ABSTRACT. This paper introduces a new method to compute the approximating explicit B-spline curve to a given set of noisy data points.The proposed method computes all parameters of the B-spline fitting curve of a given order.This requires to solve a difficult continuous, multimodal, and multivariate nonlinear least-squares optimization problem. In our approach, this optimization problem is solved by applying the firefly algorithm, a powerful metaheuristic nature-inspired algorithm well suited for optimization. The method has been applied to three illustrative real-world engineering examples from different fields. Our experimental results show that the presented method performs very well, being able to fit the data points with a high degree of accuracy. Furthermore, our scheme outperforms some popular previous approaches in terms of different fitting error criteria

    Hybrid Functional-Neural Approach for Surface Reconstruction

    Get PDF
    ABSTRACT. This paper introduces a new hybrid functional-neural approach for surface reconstruction. Our approach is based on the combination of two powerful artificial intelligence paradigms: on one hand, we apply the popular Kohonen neural network to address the data parameterization problem. On the other hand, we introduce a new functional network, called NURBS functional network, whose topology is aimed at reproducing faithfully the functional structure of the NURBS surfaces. These neural and functional networks are applied in an iterative fashion for further surface refinement. The hybridization of these two networks provides us with a powerful computational approach to obtain a NURBS fitting surface to a set of irregularly sampled noisy data points within a prescribed error threshold. The method has been applied to two illustrative examples. The experimental results confirm the good performance of our approach.This research has been kindly supported by the Computer Science National Program of the Spanish Ministry of Economy and Competitiveness, Project ref. no. TIN2012-30768, Toho University (Funabashi, Japan), and the University of Cantabria (Santander, Spain)

    Make robots Be Bats: Specializing robotic swarms to the Bat algorithm

    Get PDF
    Bat algorithm is a powerful nature-inspired swarm intelligence method proposed by Prof. Xin-She Yang in 2010, with remarkable applications in industrial and scientific domains. However, to the best of authors' knowledge, this algorithm has never been applied so far in the context of swarm robotics. With the aim to fill this gap, this paper introduces the first practical implementation of the bat algorithm in swarm robotics. Our implementation is performed at two levels: a physical level, where we design and build a real robotic prototype; and a computational level, where we develop a robotic simulation framework. A very important feature of our implementation is its high specialization: all (physical and logical) components are fully optimized to replicate the most relevant features of the real microbats and the bat algorithm as faithfully as possible. Our implementation has been tested by its application to the problem of finding a target location within unknown static indoor 3D environments. Our experimental results show that the behavioral patterns observed in the real and the simulated robotic swarms are very similar. This makes our robotic swarm implementation an ideal tool to explore the potential and limitations of the bat algorithm for real-world practical applications and their computer simulations.This research has been kindly supported by the Computer Science National Program of the Spanish Research Agency (Agencia Estatal de InvestigaciĂłn) and European Funds, Project #TIN2017-89275-R (AEI/FEDER, UE), the project EVOLFORMAS Ref. #JU12, jointly supported by public body SODERCAN of the Regional Government of Cantabria and the European funds FEDER, the project PDE-GIR of the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions grant agreement #778035, Toho University (Funabashi, Japan), and the University of Cantabria (Santander, Spain). The authors are particularly grateful to the Department of Information Science of Toho University for all the facilities given to carry out this work. Special thanks are also due to the Editors and the three anonymous reviewers for their encouraging and constructive comments and very helpful feedback that allowed us to improve our paper signi cantly

    Rank-based ant system with originality reinforcement and pheromone smoothing

    Get PDF
    Ant Colony Optimization (ACO) encompasses a family of metaheuristics inspired by the foraging behaviour of ants. Since the introduction of the first ACO algorithm, called Ant System (AS), several ACO variants have been proposed in the literature. Owing to their superior performance over other alternatives, the most popular ACO algorithms are Rank-based Ant System (ASRank), Max-Min Ant System (MMAS) and Ant Colony System (ACS). While ASRank shows a fast convergence to high-quality solutions, its performance is improved by other more widely used ACO variants such as MMAS and ACS, which are currently considered the state-of-the-art ACO algorithms for static combinatorial optimization problems. With the purpose of diversifying the search process and avoiding early convergence to a local optimal, the proposed approach extends ASRank with an originality reinforcement strategy of the top-ranked solutions and a pheromone smoothing mechanism that is triggered before the algorithm reaches stagnation. The approach is tested on several symmetric and asymmetric Traveling Salesman Problem and Sequential Ordering Problem instances from TSPLIB benchmark. Our experimental results show that the proposed method achieves fast convergence to high-quality solutions and outperforms the current state-of-the-art ACO algorithms ASRank, MMAS and ACS, for most instances of the benchmark.This research work was funded by the European project PDE-GIR of the European Union’s Horizon 2020 research & innovation program (Marie Sklodowska-Curie action, grant agreement No 778035), and by the Spanish government project #PID2021-127073OB-I00 of the MCIN/AEI/10.13039/501100011033/FEDER, EU “Una manera de hacer Europa”

    Immunological-based approach for accurate fitting of 3D noisy data points with BĂ©zier surfaces

    Get PDF
    Free-form parametric surfaces are common tools nowadays in many applied fields, such as Computer-Aided Design & Manufacturing (CAD/CAM), virtual reality, medical imaging, and many others. A typical problem in this setting is to fit surfaces to 3D noisy data points obtained through either laser scanning or other digitizing methods, so that the real data from a physical object are transformed back into a fully usable digital model. In this context, the present paper describes an immunologicalbased approach to perform this process accurately by using the classical free-form BĂ©zier surfaces. Our method applies a powerful bio-inspired paradigm called Artificial Immune Systems (AIS), which is receiving increasing attention from the scientific community during the last few years because of its appealing computational features. The AIS can be understood as a computational methodology based upon metaphors of the biological immune system of humans and other mammals. As such, there is not one but several AIS algorithms. In this chapter we focus on the clonal selection algorithm (CSA), which explicitly takes into account the affinity maturation of the immune response. The paper describes how the CSA algorithm can be effectively applied to the accurate fitting of 3D noisy data points with BĂ©zier surfaces. To this aim, the problem to be solved as well as the main steps of our solving method are described in detail. Some simple yet illustrative examples show the good performance of our approach. Our method is conceptually simple to understand, easy to implement, and very general, since no assumption is made on the set of data points or on the underlying function beyond its continuity. As a consequence, it can be successfully applied even under challenging situations, such as the absence of any kind of information regarding the underlying function of data

    Cuckoo Search with LĂ©vy Flights for Weighted Bayesian Energy Functional Optimization in Global-Support Curve Data Fitting

    Get PDF
    ABSTRACT. The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task.The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.This research has been kindly supported by the Computer Science National Program of the Spanish Ministry of Economy and Competitiveness, Project Ref. no. TIN2012-30768, Toho University (Funabashi, Japan), and the University of Cantabria (Santander, Spain)

    On Selection of a Benchmark by Determining the Algorithms' Qualities

    Get PDF
    ABSTRACT: The authors got the motivation for writing the article based on an issue, with which developers of the newly developed nature-inspired algorithms are usually confronted today: How to select the test benchmark such that it highlights the quality of the developed algorithm most fairly? In line with this, the CEC Competitions on Real-Parameter Single-Objective Optimization benchmarks that were issued several times in the last decade, serve as a testbed for evaluating the collection of nature-inspired algorithms selected in our study. Indeed, this article addresses two research questions: (1) How the selected benchmark affects the ranking of the particular algorithm, and (2) If it is possible to find the best algorithm capable of outperforming all the others on all the selected benchmarks. Ten outstanding algorithms (also winners of particular competitions) from different periods in the last decade were collected and applied to benchmarks issued during the same time period. A comparative analysis showed that there is a strong correlation between the rankings of the algorithms and the benchmarks used, although some deviations arose in ranking the best algorithms. The possible reasons for these deviations were exposed and commented on.This work was supported in part by the Slovenian Research Agency (Projects J2-1731 and L7-9421) under Grant P2-0041, in part by the Project PDE-GIR of the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie under Grant 778035, and in part by the Spanish Ministry of Science, Innovation and Universities (Computer Science National Program) of the Agencia Estatal de Investigacion and European Funds EFRD (AEI/FEDER, UE) under Grant TIN2017–89275-R

    New Perspectives in the Development of the Artificial Sport Trainer

    Get PDF
    ABSTRACT: The rapid development of computer science and telecommunications has brought new ways and practices to sport training. The artificial sport trainer, founded on computational intelligence algorithms, has gained momentum in the last years. However, artificial sport trainer usually suffers from a lack of automatisation in realization and control phases of the training. In this study, the Digital Twin is proposed as a framework for helping athletes, during realization of training sessions, to make the proper decisions in situations they encounter. The digital twin for artificial sport trainer is based on the cognitive model of humans. This concept has been applied to cycling, where a version of the system on a Raspberry Pi already exists. The results of porting the digital twin on the mentioned platform shows promising potential for its extension to other sport disciplines.Akemi Galvez and Andres Iglesias have received funding from the project PDE-GIR of the European Union’s Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant agreement no. 778035, and from the project TIN2017-89275-R funded by MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa”
    • 

    corecore